Examples (Hello World+)
Already completed your first run? If not, start with the Quick Start. This page collects copy-paste examples beyond the minimal case.
π§° Agent with Tool (Python)
from glaip_sdk import Client
client = Client()
# Create tool from local Python file
tool = client.create_tool(
name="hello-tool",
file_path="hello_tool.py"
)
# Create agent with tool
agent = client.create_agent(
name="hello-agent",
instruction="You are a friendly AI assistant. Use the hello world tool to greet users.",
tools=[tool]
)
# Test the agent
agent.run("Please greet me using your hello world tool!")
# Verify
print(f"Agent ID: {agent.id}")
print(f"Tool ID: {tool.id}")
# Clean up
agent.delete()
tool.delete()
π§° Multi-Tool Agent (Python)
from glaip_sdk import Client
client = Client()
# Create tools from local Python files
calculator_tool = client.create_tool(
name="calculator",
file_path="calculator_tool.py"
)
weather_tool = client.create_tool(
name="weather",
file_path="weather_tool.py"
)
# Create agent with multiple tools
agent = client.create_agent(
name="multi-tool-agent",
instruction="You are a helpful assistant with calculator and weather tools.",
tools=[calculator_tool, weather_tool]
)
# Test the agent
agent.run("What's 15 + 27? Also, what's the weather like?")
# Verify
print(f"Agent ID: {agent.id}")
print(f"Calculator Tool ID: {calculator_tool.id}")
print(f"Weather Tool ID: {weather_tool.id}")
# Clean up
agent.delete()
calculator_tool.delete()
weather_tool.delete()
π» CLI Examples
Agent with Tool
# Create tool from local file
aip tools create \
--file "hello_tool.py" \
--name "hello-world-tool" \
--description "A simple tool that says hello to users"
# Get tool ID from the list output above
aip agents create \
--name "hello-agent" \
--instruction "You are a friendly AI assistant. Use the hello world tool to greet users." \
--tools <TOOL_ID>
# Get agent ID from the list output above
aip agents run <AGENT_ID> --input "Please greet me using your hello world tool!"
# Clean up
aip agents delete <AGENT_ID>
aip tools delete <TOOL_ID>
π Multi-Agent Collaboration
Coordinator Pattern
from glaip_sdk import Client
client = Client()
# Create specialized agents
math_agent = client.create_agent(
name="math-specialist",
instruction="You are a math expert. Solve mathematical problems."
)
writing_agent = client.create_agent(
name="writing-specialist",
instruction="You are a writing expert. Help with writing tasks."
)
# Create coordinator agent
coordinator = client.create_agent(
name="coordinator",
instruction="Coordinate between math and writing specialists.",
agents=[math_agent, writing_agent]
)
# Test coordination
coordinator.run("I need help with both math and writing. Can you coordinate?")
# Clean up
coordinator.delete()
math_agent.delete()
writing_agent.delete()
π― What to Try Next
Modify the instructions: Change agent behavior by updating the instruction text
Add more tools: Create additional tools for different capabilities
Experiment with models: Try different language models if available
Build workflows: Create agents that can call each other
Add MCPs: Connect to external services and APIs
π Next Steps
Learn concepts: Understand Core Concepts
Build agents: Follow the Agents Guide
Create tools: Learn to build custom tools
Connect services: Explore MCP integration
π‘ Tips for Success
Start simple: Begin with basic agents and gradually add complexity
Use descriptive names: Make it easy to identify your resources
Always clean up: Delete resources when you're done
Test incrementally: Verify each step works before adding more
Check the logs: Use debug mode if something doesn't work as expected
These examples build on the basics from Quick Start. Copy, paste, modify, and experiment!