Standard RAG LMRP

The Standard RAG pipeline uses 6 primary LMRPs across preprocessing, retrieval, and generation stages. Some of the LMRP

Summary LMRP Table

LMRP Name
Pipeline Stage
Purpose
Model
Conditional

build_standalone_query

Preprocessing

Transforms query with history into standalone query

gpt-4.1-nano

✓ History exists AND context < 32K chars

standard_rag_transform_query

Retrieval

Optimizes query for retrieval (intent clarification)

gpt-4o-mini

✓ NOT Smart Search AND context < 32K chars

generate_conversation_title

Concurrent/Parallel

Generates conversation title from first message

gpt-4.1-mini

✗ Always runs

generate_related_query

Generation

Suggests 2-3 related follow-up queries

gpt-4.1-mini

✓ Smart Search enabled

standard_rag_reference_formatter

Generation

Filters retrieved chunks to only referenced content

gpt-5-mini

✓ Chunks exist AND reference_formatter_type="llm"

time_extractor

Preprocessing

Extracts temporal metadata for memory retrieval

gpt-4.1-nano

✓ Memory enabled


Last updated