Standard RAG LMRP
The Standard RAG pipeline uses 6 primary LMRPs across preprocessing, retrieval, and generation stages. Some of the LMRP
Summary LMRP Table
build_standalone_query
Preprocessing
Transforms query with history into standalone query
gpt-4.1-nano
✓ History exists AND context < 32K chars
standard_rag_transform_query
Retrieval
Optimizes query for retrieval (intent clarification)
gpt-4o-mini
✓ NOT Smart Search AND context < 32K chars
generate_conversation_title
Concurrent/Parallel
Generates conversation title from first message
gpt-4.1-mini
✗ Always runs
generate_related_query
Generation
Suggests 2-3 related follow-up queries
gpt-4.1-mini
✓ Smart Search enabled
standard_rag_reference_formatter
Generation
Filters retrieved chunks to only referenced content
gpt-5-mini
✓ Chunks exist AND reference_formatter_type="llm"
time_extractor
Preprocessing
Extracts temporal metadata for memory retrieval
gpt-4.1-nano
✓ Memory enabled
Last updated