RAG with Dynamic Models
Installation
# you can use a Conda environment
pip install --extra-index-url "https://oauth2accesstoken:$(gcloud auth print-access-token)@glsdk.gdplabs.id/gen-ai-internal/simple/" gllm-rag gllm-core gllm-generation gllm-inference gllm-pipeline gllm-retrieval gllm-misc gllm-datastore# you can use a Conda environment
pip install --extra-index-url "https://oauth2accesstoken:$(gcloud auth print-access-token)@glsdk.gdplabs.id/gen-ai-internal/simple/" gllm-rag gllm-core gllm-generation gllm-inference gllm-pipeline gllm-retrieval gllm-misc gllm-datastore# you can use a Conda environment
FOR /F "tokens=*" %T IN ('gcloud auth print-access-token') DO pip install --extra-index-url "https://oauth2accesstoken:%T@glsdk.gdplabs.id/gen-ai-internal/simple/" gllm-rag gllm-core gllm-generation gllm-inference gllm-pipeline gllm-retrieval gllm-misc gllm-datastoreProject Setup
1
<project-name>/
├── data/
│ ├── <index>/...
│ ├── chroma.sqlite3
│ ├── imaginary_animals.csv
├── modules/
│ ├── retriever.py
│ └── response_synthesizer.py # 👈 Updated with dynamic model option
├── pipeline.py # 👈 Updated with dynamic model pipeline
├── indexer.py
└── .env 1) Make the response synthesizer dynamic
2) Make the pipeline dynamic
1
2
3) Run the pipeline
📂 Complete Guide Files
Last updated
Was this helpful?