Supported Vector Data Store
This page provides instructions for setting up a vector data store to be used in your retrieval pipeline.
ChromaDB Memory
Store type:
chroma
Client type:
memory
Example:
store = build_data_store( store_type="chroma", index_name="your_index_name", embedding=your_embedding, config: {"client_type": "memory"} )
ChromaDB Persistent
Store type:
chroma
Client type:
persistent
Example:
store = build_data_store( store_type="chroma", index_name="your_index_name", embedding=your_embedding, config={"client_type": "persistent", "persist_directory": "/path/to/dir"} )
ChromaDB HTTP
Store type:
chroma
Client type:
http
Example:
store = build_data_store( store_type="chroma", index_name="your_index_name", embedding=your_embedding, host="localhost", port=8000, config={"client_type": "http"} )
Elasticsearch
Store type:
elasticsearch
Set up a managed Elasticsearch instance with vector search via Elastic Cloud or local development setup
Example:
store = build_data_store( store_type="elasticsearch", index_name="your_index_name", embedding=your_embedding, config={"url": "https://your-elasticsearch-endpoint", "api_key": os.getenv("ELASTIC_API_KEY")} )
Last updated