Supported Vector Data Store

This page provides instructions for setting up a vector data store to be used in your retrieval pipeline.

  1. ChromaDB Memory

    1. Store type: chroma

    2. Client type: memory

    3. Example:

    store = build_data_store(
        store_type="chroma",
        index_name="your_index_name",
        embedding=your_embedding,
        config: {"client_type": "memory"}
    )
  2. ChromaDB Persistent

    1. Store type: chroma

    2. Client type: persistent

    3. Example:

    store = build_data_store(
        store_type="chroma",
        index_name="your_index_name",
        embedding=your_embedding,
        config={"client_type": "persistent", "persist_directory": "/path/to/dir"}
    )
  3. ChromaDB HTTP

    1. Store type: chroma

    2. Client type: http

    3. Example:

    store = build_data_store(
        store_type="chroma",
        index_name="your_index_name",
        embedding=your_embedding,
        host="localhost",
        port=8000,
        config={"client_type": "http"}
    )
  4. Elasticsearch

    1. Store type: elasticsearch

    2. Set up a managed Elasticsearch instance with vector search via Elastic Cloud or local development setup

    3. Example:

    store = build_data_store(
        store_type="elasticsearch",
        index_name="your_index_name",
        embedding=your_embedding,
        config={"url": "https://your-elasticsearch-endpoint", "api_key": os.getenv("ELASTIC_API_KEY")}
    )

Last updated