Supported Models

This page provides a list of all supported language models and embedding models.

Language Models (LMs)

LMs are used to generate natural language responses, either directly from user prompts or based on retrieved context in a RAG pipeline. Use one of the model IDs below to configure the language model component.

  1. Anthropic

    1. Model ID Format: anthropic/model-name.

    2. Example: anthropic/claude-3-5-sonnet-latest.

    3. Available models: Anthropic available models.

  2. Azure OpenAI

    1. Model ID Format: azure-openai/azure-endpoint:azure-deployment.

    2. Example: azure-openai/https://my-resource.openai.azure.com:my-deployment.

    3. Azure OpenAI Resource and Deployment:

  3. Bedrock

    1. Model ID Format: bedrock/model-name.

    2. Example: bedrock/us.anthropic.claude-sonnet-4-20250514-v1:0.

    3. Available models: Bedrock supported models.

  4. Google Gen AI

    1. Model ID Format: google/model-name.

    2. Example: google/gemini-1.5-flash-latest.

  5. Google Vertex AI

    1. Model ID Format: google/model-name.

    2. Example: google/gemini-1.5-flash.

  6. LangChain

    1. Model ID Format: langchain/<package>.<class>:model-name.

    2. Example: langchain/langchain_openai.ChatOpenAI:gpt-4o-mini.

    3. Varied credentials depending on the package and class.

  7. LiteLLM

    1. Model ID Format: litellm/provider/model-name.

    2. Example: litellm/openai/gpt-4o-mini.

    3. Varied credentials depending on the package and class.

    4. Available models: LiteLLM supported providers.

  8. OpenAI

    1. Model ID Format: openai/model-name.

    2. Example: openai/gpt-4o-mini.

    3. Available models: OpenAI available models.

  9. OpenAI Compatible

    1. Model ID Format: openai-compatible/base-url:model-name.

    2. Example: openai-compatible/https://api.groq.com/openai/v1:llama3-8b-8192.

    3. Varied credentials depending on the endpoints.

    4. Compatible endpoints include but are not limited to:

Embedding Models (EMs)

Embedding models are used to convert text into vector representations, enabling similarity search and document retrieval. Use one of the model IDs below to configure the embedding model component.

  1. Azure OpenAI

    1. Model ID Format: azure-openai/azure-endpoint:azure-deployment.

    2. Example: azure-openai/https://my-resource.openai.azure.com:my-deployment.

    3. Azure OpenAI Resource and Deployment:

  2. Google Gen AI

    1. Model ID Format: google/model-name.

    2. Example: google/text-embedding-004.

  3. Google Vertex AI

    1. Model ID Format: google/model-name.

    2. Example: google/text-embedding-004.

  4. LangChain

    1. Model ID Format: langchain/<package>.<class>:model-name.

    2. Example: langchain/langchain_openai.OpenAIEmbeddings:text-embedding-3-small.

    3. Varied credentials depending on the package and class.

  5. OpenAI

    1. Model ID Format: openai/model-name.

    2. Example: openai/text-embedding-3-small.

    3. Available models: OpenAI available models.

  6. Voyage

    1. Model ID Format: voyage/model-name.

    2. Example: voyage/voyage-3.5-lite.

    3. Available models: Voyage available models.

Last updated