Image
gllm-docproc | Tutorial: Image Data Generator | Use Case: Advanced DPO Pipeline | API Reference
Image Data Generator is a component that processes image elements and generates data derived from their visual content.
Installation
# you can use a Conda environment
pip install --extra-index-url https://oauth2accesstoken:$(gcloud auth print-access-token)@glsdk.gdplabs.id/gen-ai-internal/simple/ "gllm-docproc[image]"# you can use a Conda environment
$token = (gcloud auth print-access-token)
pip install --extra-index-url "https://oauth2accesstoken:$token@glsdk.gdplabs.id/gen-ai-internal/simple/" "gllm-docproc[image]"# you can use a Conda environment
FOR /F "tokens=*" %T IN ('gcloud auth print-access-token') DO SET TOKEN=%T
pip install --extra-index-url "https://oauth2accesstoken:%TOKEN%@glsdk.gdplabs.id/gen-ai-internal/simple/" "gllm-docproc[image]"You can use the following as a sample file: imageloader-output.json.
Image Caption Data Generator
ImageCaptionDataGenerator is responsible for processing image elements and generating captions by leveraging BaseImageToCaption from gllm-multimodal.
Create a script called main.py:
import json
from gllm_multimodal.modality_converter.image_to_text.image_to_caption import LMBasedImageToCaption
from gllm_docproc.data_generator.image_data_generator import ImageCaptionDataGenerator
# Load the input elements to be processed
with open('./data/source/input_elements.json', 'r') as file:
elements = json.load(file)
# Initialize the ImageCaptionDataGenerator with a preset image-to-caption model
image_to_caption = LMBasedImageToCaption.from_preset()
image_caption_data_generator = ImageCaptionDataGenerator(image_to_caption)
# Generate captions for image elements
output_elements = image_caption_data_generator.generate(elements)
print(output_elements)Run the script:
python main.pyThe loader will generate the following: output JSON.
Multi Model Image Caption Data Generator
MultiModelImageCaptionDataGenerator is responsible for handling image captioning across multiple models with lazy initialization by leveraging LMBasedImageToCaption from gllm-multimodal.
Create a script called main.py:
Run the script:
The loader will generate the following: output JSON.
Last updated