Text-to-Graph
Available Implementations:
Installation
# you can use a Conda environment
pip install --extra-index-url https://oauth2accesstoken:$(gcloud auth print-access-token)@glsdk.gdplabs.id/gen-ai-internal/simple/ "gllm-misc[json_repair]" openai# you can use a Conda environment
pip install --extra-index-url "https://oauth2accesstoken:$((gcloud auth print-access-token))@glsdk.gdplabs.id/gen-ai-internal/simple/" "gllm-misc[json_repair]"# you can use a Conda environment
FOR /F "tokens=*" %T IN ('gcloud auth print-access-token') DO pip install --extra-index-url "https://oauth2accesstoken:%T@glsdk.gdplabs.id/gen-ai-internal/simple/" "gllm-misc[json_repair]"Quick Start
import asyncio
from gllm_inference.lm_invoker import OpenAILMInvoker
from gllm_misc.graph_transformer import LMBasedGraphTransformer
from gllm_core.schema import Chunk
async def main():
# 1. Initialize the LM invoker
lm_invoker = OpenAILMInvoker(
model_name="gpt-4o-mini",
api_key="<YOUR_OPENAI_API_KEY>"
)
# 2. Create the graph transformer
transformer = LMBasedGraphTransformer(lm_invoker=lm_invoker)
# 3. Extract graph from text
text = "Marie Curie discovered radium and won the Nobel Prize twice."
chunks = [Chunk(content=text)]
graph_docs = await transformer.convert_to_graph_documents(chunks)
# 4. Print results
graph = graph_docs[0]
print("Nodes:", [node.id for node in graph.nodes])
print("Relationships:", [(r.source.id, r.type, r.target.id) for r in graph.relationships])
asyncio.run(main())What it does
Inputs
Outputs
Understanding the Output
Customizing Graph Extraction
Constraining Node Types
Constraining Relationship Types
Strict Mode vs. Lenient Mode
Mind Map Extraction
What's a Mind Map?
Basic Mind Map Extraction
Mind Map Node Types
Mind Map Relationship Types
Last updated
Was this helpful?